Co-inoculation Effect of Rhizobia and Plant Growth Promoting Rhizobacteria on Common Bean Growth in a Low Phosphorus Soil

نویسندگان

  • Hezekiah Korir
  • Nancy W. Mungai
  • Moses Thuita
  • Yosef Hamba
  • Cargele Masso
چکیده

Nitrogen (N) fixation through legume-Rhizobium symbiosis is important for enhancing agricultural productivity and is therefore of great economic interest. Growing evidence indicates that other soil beneficial bacteria can positively affect symbiotic performance of rhizobia. Nodule endophytic plant growth promoting rhizobacteria (PGPR) were isolated from common bean nodules from Nakuru County in Kenya and characterized 16S rDNA partial gene sequencing. The effect of co-inoculation of rhizobium and PGPR, on nodulation and growth of common bean (Phaseolus vulgaris L.) was also investigated using a low phosphorous soil under greenhouse conditions. Gram-positive nodule endophytic PGPR belonging to the genus Bacillus were successfully isolated and characterized. Two PGPR strains (Paenibacillus polymyxa and Bacillus megaterium), two rhizobia strains (IITA-PAU 987 and IITA-PAU 983) and one reference rhizobia strain (CIAT 899) were used in the co-inoculation study. Two common bean varieties were inoculated with Rhizobium strains singly or in a combination with PGPR to evaluate the effect on nodulation and growth parameters. Co-inoculation of IITA-PAU 987 + B. megaterium recorded the highest nodule weight (405.2 mg) compared to IITA-PAU 987 alone (324.8 mg), while CIAT 899 + B. megaterium (401.2 mg) compared to CIAT 899 alone (337.2 mg). CIAT 899 + B. megaterium recorded a significantly higher shoot dry weight (7.23 g) compared to CIAT 899 alone (5.80 g). However, there was no significant difference between CIAT 899 + P. polymyxa and CIAT 899 alone. Combination of IITA-PAU 987 and B. megaterium led to significantly higher shoot dry weight (6.84 g) compared to IITA-PAU 987 alone (5.32 g) but no significant difference was observed when co-inoculated with P. polymyxa. IITA-PAU 983 in combination with P. polymyxa led to significantly higher shoot dry weight (7.15 g) compared to IITA-PAU 983 alone (5.14 g). Plants inoculated with IITA-PAU 987 and B. megaterium received 24.0 % of their nitrogen demand from atmosphere, which showed a 31.1% increase compared to rhizobium alone. Contrast analysis confirmed the difference between the co-inoculation of rhizobia strains and PGPR compared to single rhizobia inoculation on the root dry weight. These results show that co-inoculation of PGPR and Rhizobia has a synergistic effect on bean growth. Use of PGPR may improve effectiveness of Rhizobium biofertilizers for common bean production. Testing of PGPR under field conditions will further elucidate their effectiveness on grain yields of common bean.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential use of Iranian rhizobial strains as plant growth-promoting rhizobacteria (PGPR) and effects of selected strains on growth characteristics of wheat, corn and alfalfa

Abstract Many agricultural researches have been performed to improve soil productivity. Nitrogen (N) and Phosphorus (P) are essential elements which are utilized by the plants in large amounts. Phosphorus can be provided by applying chemical fertilizers. Microorganisms convert insoluble phosphate to the soluble form and some bacteria such as rhizobacteria play an important role in this proces...

متن کامل

Nitrogen and Phosphorus Use Efficiency of Spring Wheat (Triticum Aestivum L.) as Affected by Seed Inoculation With Plant Growth Promoting Rhizobacteria (PGPR)

In order to study of the effect of seed inoculation with PGPR on nitrogen and phosphorus use efficiency of spring wheat in different levels of nitrogen and phosphorus fertilizers, an experimental was conducted at the Research Farm of Mohageh Ardabili University, Ardabil, Iran during 2012 year. The combination of nitrogen fertilizer in three levels (0, 40 and 80 kg N/ha as urea) and phosphorus f...

متن کامل

Nitrogen and Phosphorus Use Efficiency of Spring Wheat (Triticum Aestivum L.) as Affected by Seed Inoculation With Plant Growth Promoting Rhizobacteria (PGPR)

In order to study of the effect of seed inoculation with PGPR on nitrogen and phosphorus use efficiency of spring wheat in different levels of nitrogen and phosphorus fertilizers, an experimental was conducted at the Research Farm of Mohageh Ardabili University, Ardabil, Iran during 2012 year. The combination of nitrogen fertilizer in three levels (0, 40 and 80 kg N/ha as urea) and phosphorus f...

متن کامل

An overview of plant growth promoting rhizobacteria and their influence on essential oils of medicinal plants: a review article.

One of the important and necessary practices for improving nutrients availability in sustainable agriculture is using microorganisms. Beside the negative effects of chemical fertilizers on the soil and human health, plant growth promoting rhizobacteria are known as an alternative to supply the organic nutrients of plants during the past two decades. Enriching soil fertility by eco-friendly meth...

متن کامل

Evaluating the Effect of Cadmium on the Decline of Arizona Cypress Seedlings and the Enhancement Role of Mycorrhizal Fungus and Plant Growth Promoting Rhizobacteria

Trees decline is a complex physiological disease that results from the interactions between several factors, one of which is heavy metal stress that ultimately leads to the death of trees. This experiment, which was conducted during 2016-2017 at the campus facility of the Department of Horticulture at Isfahan University of Technology, was conducted to investigate the effects of inoculation with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017